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Analytic and Numerical Evidence from Quantum 
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dv = 2A - 7 in the d = 3 Ising Model  
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The hyperscaling relation du = 2 A -  7(d = 3) for the lsing model has been 
shown to follow from a constructive approach proposed by one of the authors 
(R.S.) of a relativistic theory of self-interacting Bosons in d space-time dimen- 
sions. We present evidence that the two assumptions made in this approach are 
valid: On a finite Euclidean (hyper-) cubical lattice in d dimensions the 
renormalization map from the bare to the renormalized parameters should have 
nonvanishing Jacobian everywhere. We show this analytically and numerically 
on the boundary set of the parameters. The numerical analysis involves Monte 
Carlo calculations in the region where the bare coupling constant go is infinite, 
giving the Ising model. The linear size n of the lattice (with periodic boundary 
conditions) was taken to be 5, 6, and 10. There we also checked the second 
assumption saying that the correlation length for the Ising model is a monotonic 
function of the temperature. We also comment on the possible numbers of zeros 
of the Callan-Symanzik fl function of this theory. 

KEY WORDS: Ising model; hyperscaling, relativistic, self-interacting Boson 
quantum field theory; renormalization; Monte-Carlo calculations; multispin 
coding. 

1. INTRODUCTION 

The question whether the hyperscaling relation 

d~ = 2/x - -~ 

holds for the Ising model in d = 3 dimensions remains one of the controver- 
sial issues in the theory of critical phenomena. It is known that the 
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dimensionless renormalized coupling constant remains bounded, (1-3) 
whence 

holds rigorously for all d. High-temperature expansions combined with 
Pad6 techniques numerically favor a strict inequality in relation (1) when 
d = 3. For a recent review of this, see, e.g., Ref. 4. 

There are, however, also attempts to reconcile high-temperature series 
for d = 3 with scaling relations; see, e.g., Ref. 5. 

Within renormalization group theory relation (1) is of course an 
equality; see, e.g., Ref. 6. 

In a series of articles (4'7-1~ one of the present authors (R.S.) proposed 
a constructive approach to a relativistic +4 theory in d space-time dimen- 
sions within the following frame: 

(a) Euclidean formulation, 
(b) intermediate renormalization, 
(c) lattice approximation. 
We briefly explain this approach, the assumptions involved, and how it 

leads to a prediction on the hyperscaling relation (1). 
The Euclidean approach has the advantage of allowing a discussion in 

the framework of measure theory in terms of functional integration. (~1'12~ 
The intermediate renormalization, (~3) which is a renormalization at mo- 
mentum zero, allows the application of Griffiths' inequalities (see, e.g., Ref. 
14) and Lebowitz inequalities. (15'16) Sufficient conditions are then known to 
ensure that the moments thus obtained are the Wightman functions of a 
relativistic theory at the Euclidean points. (17) 

The lattice approximation is a convenient cutoff which furthermore 
allows us to relate this approach to critical phenomena. Two of the 
renormalization conditions fix the two-point function and thus the field 
strength and a typical length, whereas the third gives the coupling constant 
by fixing the truncated four-point function at momentum zero. 

On a finite lattice this renormalization map is real analytic in the bare 
parameters. In Refs. 7-9 the following assumptions for a finite hypercubi- 
cal lattice were made: 

(i) The renormalization map has everywhere nonvanishing Jacobian 
(local injectivity). This was combined with a relative mild assumption on 
the behavior when go, the bare coupling constant, tends to infinity, which 
leads to the Ising model. This assumption would in particular be satisfied if 
the following were true: 

(ii) The Ising model correlation length on a finite lattice given by the 
second moment of the two-point function is a monotonically decreasing 
function of the temperature. 

These assumptions evidently do not involve the lattice distance. In 
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Refs. 1-3 they were shown to imply the following: 
(a) The renormalization map is globally injective, i.e., the renormalized 

parameters uniquely specify the theory on a finite lattice. 
(/3) Therefore, under the renormalization map the boundaries go = 0 

(Gaussian theory), go = oo (Ising model), Z = 0 (ultralocal theory) (Z 
= amplitude renormalization constant), and Z = oc (strongly coupled 
modes) are mapped onto the boundary of the image. 

We will call the images of the sets go = 0 and go = + oc under the 
renormalization map the Gaussian and Ising surface, respectively. In partic- 
ular (/3) implies the following: 

(T) For fixed renormalization of the two-point function (two condi- 
tions) the renormalized coupling constant takes its maximal value at the 
Ising surface. It does not seem unreasonable to assume that for fixed 
renormalization of the two-point function, the renormalized coupling con- 
stant is a monotone function of the bare coupling constant. This assump- 
tion trivially also implies (7); on the other hand, this assumption is n o t  

necessarily a consequence of (i) and (ii): maps which define diffeo- 
morphisms, but where certain matrix elements of the Jacobian change sign, 
may easily be found. In other words: Conjecture (i) is compatible with the 
possibility that the renormalized coupling constant is not a monotonic 
function of the bare coupling constant go for fixed normalization of the 
two-point function. 

Now it is known that there exists nontrivial infinite volume continuum 
q4 theories for d = 3 within the framework given by (a)-(c). (18-2~ Hence by 
(fl)  in the thermodynamic limit (lattice tending to infinity) followed by the 
scale limit (lattice distance going to zero) the Ising surface cannot fall into 
the Gaussian surface. This again implies that relation (1) has to be an 
equality for d = 3 giving a hyperscaling relation. There is a subtlety in this 
argument, which we want to comment on, namely, the order in which the 
limits are taken. In Ref. 20, e.g., first the lattice spacing tends to zero for 
fixed volume and then the thermodynamic limit is taken. The phase space 
cell expansion and cluster expansion of Glimm, Jaffe, and Spencer (21) as 
used in Refs. 19 and 20, however, may be used to show that (for small 
coupling constants), the order of taking the limits is irrelevant (K. Oster- 
walder, private communication). 

Now in a recent paper (23) G. A. Baker, Jr. and J. M. Kincaid 
presented numerical evidence that the renormalized coupling constant does 
not take its maximal value at the Ising surface (see, however, another 
analysis of the same data given by B. G. Nickel and B. Sharpe(24)). 
Previous numerical evidence in the same direction was also found by K. G. 
Wilson and J. Kogut for d = 4. (25) 

With these conflicting results, it is of interest to take a closer look at 
conjectures (i) and (ii). It is the aim of this paper to present direct evidence 
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for these assumptions, which we stress are assumptions involving arbitrary 
large but finite lattices. 

For the case d = 1, numerical evidence for assumptions (i) to hold has 
previously been given by D. Marchesin. (26) 

In Section 2 we check assumption (i) on the boundary of the set of 
bare parameters. More precisely, we show that the Jacobian is nonzero 
when go -- 0 or when Z -- 0. For go = 0 this is of course not surprising since 
it is related to the well-known fact that in the continuum infinite volume 
limit theory intermediate renormalization works in perturbation theory. 

When Z -~ 0% the Jacobian tends to zero. However, after an appropri- 
ate rescaling, we obtain a quantity which we show to be nonvanishing. The 
same situation occurs when go tends to infinity: By an appropriate rescal- 
ing, we obtain a quantity which essentially only depends on /9 = (kT) - l  
through Ising model quantities. 

In Section 3 we present Monte Carlo calculations for this (scaled) 
Jacobian on an n • n • n lattice (n = 5, 6, and 10) with periodic boundary 
conditions and T above the critical temperature. (Since we work with 
untruncated two-point functions, our constructive approach aims at a 
theory in the one-phase region, in other words, in the thermodynamic limit 
only the part of the Ising surface above the critical temperature survives.) 

The Monte Carlo method employed is a combination of the Metropo- 
lis method (27) and the so-called heat bath method, by which the importance 
sampling is achieved by successively putting each lattice site variable into a 
heat bath of temperature T while freezing the remaining lattice variables. 
Standard references for this method, which also quote earlier contributions, 
are Refs. 28-30. 

To make the computation fast, we employed the technique of storing 
many spins in a single memory word of the computer. This method has 
now received the name multispin coding (MAC). (31) In contrast to the work 
of Creutz, Jacobs, and Rebbi, (31-33) e.g., our MSC procedure leaves the 
single lattice variable updating procedure intact. 

The results obtained are all in agreement with conjecture (i) and 
conjecture (ii). It remains to check conjecture (i) in the interior of the set of 
allowed parameters. 

However, the results obtained so far allow to make another conclu- 
sion: 

Since in all cases the (scaled) Jacobian has the same sign and since this 
sign gives the orientation of the image of an infinitesimal volume element at 
the corresponding point, this indicates that the Ising surface is approached 
from the correct side when go--> oc. If this persists for all lattice sizes in 
three dimensions, it can only be reconciled with the result in Ref. 23, if the 
renormalized coupling constant together with a maximum beyond the Ising 
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surface also exhibits at least one minimum. Note that such stationary 
points correspond to zeros of the fl function of Callan and Symanzik. (33-35) 

In other words: If the Ising model and the c) 4 theory in three dimen- 
sions are described by different zeros of the Callan-Symanzik fl functions 
these zeros should be separated by an odd number of additional zeros. This 
again conforms with standard wisdom, according to which the Ising model 
and the q4 theory are described by an infrared stable fixed point. 

2.  A N A L Y T I C  R E S U L T S  

To establish the notation, we recall the conventions used in Ref. 1. Let 
~- be a unit lattice on a torus in d dimensions, i.e. 

6 = Z,,, x Z,,~ x �9 �9 �9 x Z,,,, 

where 77 denotes the set of integers modulo n. [~] = %a= ~n e is the number 
of points on ft. 

For i = ( i  I . . . . .  id), J = ( j l  . . . .  ,ja) E6S, ( i - j )  2 is the translation 
invariant distance square on ~-, i.e., 

d 
(i _j)2= ~,, (i e _ je )2  

e = l  

where ( i ~ - j e ) 2 = m i n [ l i e - j e [  2, (]ie--je ] -ne)2]. i , j  are called nearest- 
neighbors (NN), if (i - j ) 2  _ 1. In d dimensions, obviously each point has 
2d nearest neighbors whenever n e > 2 for all e. For fixed ~ and each 
a = ( a l , a 2 , a 3 ) E N  + XR + •  we define a probability measure /*(a) on 
R I~p by 

1 ~r exp(a2xix.~ 7r exp{--alXi4+ a3xi2)dxi (2) d/ . t({)~}j~g) = ~ ,.jNN J ]  iE ,~  \ 

Here and in what follows N will always denote a normalizing factor which 
makes the measure in question a probability measure. 

( - ) will denote expectations w.r.t, ff and ; denotes truncation. To each 
~- (and lattice spacing a = 1) we define a mapping 

T : R +  X R + XR--->I~ + Xl1~ + X ~  + 
a-~  y = T (a )  

called the renormalization map, which is given by 

1 
Yl  = ~ Z. . ( x i x j )  

*d 
1 Y2 = "~ ~ (i- j)2(x, xj) (3) 

tO 

l ~ (Xi;Xj;Xk;Xl) Y3 = I~-P i j , k , lE~  
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The relations Yl > 0, Y2 >~ 0 are a consequence of Griffiths' first inequality 
(see e.g., Ref. 14), Y3 > 0 follows from the Lebowitz inequality31Sl 

y2y~ 1 is then the correlation length squared as given by the second 
moment of the two-point function. In Ref. 5 it was furthermore shown that 
the estimate 

Y-12 < n(ff)  (4) 
Yl 

holds where 

1 ~ ( i _ j ) 2  
D ( ~ -  I~'-Jl 2 i,jE~T 

Whenever the lattice ff is a cubical box, i.e., whenever n e = n for all 
1 -< e < d, then an easy calculation shows that 

t d (n - 1)(n + 1) (n odd) 
D(ff) (5) 

d (n 2 + 2) (n even) 

The variable a I corresponds to the coupling constant and a 2 to the 
amplitude renormalization constant. 

Let 

O(Yl, Y2, Y3) 
Det(a)  - 3 (a l ,%,a3)  

be the Jacobian of the renormalization map at a. Our first result is the 
following. 

ProposRion 1. At the Gaussian surface the Jacobian Det(a) never 
vanishes: The inequality 

Det(a)t~,=o < 0 (6) 

holds for all a with - a 3 - -  da 2 ~ O. 

Remark.  Only when the last condition in Proposition 1 is satisfied, 
the renormalization map is defined. 

Hence 

OY�91 a~=0-- ~Y2 
3al 3al od[~O 

Proof.  We have 

Y3 a I =0" Det(c01~,=o= ~ det 

= 0  

3a 2 
ayl 

~a 3 

3a  2 

3Y___!2 
~0t3 al =0 

(7) 
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It was shown in Ref. 5 that the last factor in relation (7) is always < 0. 
Furthermore, a simple calculation using translation invariance gives 

0~10Y3 ~,=0 = 4!y41~,=0> 0 

This concludes the proof of Proposition l. Next we discuss ultralocal 
theories. �9 

Proposition 2. For ultralocal theories the Jacobian Det(c 0 never 
vanishes: The inequality 

Det(c~)l~=o < 0 

holds for all (a/ ,  a 2 )  E [~+ X lt~, 

P r o o f .  An easy argument shows that 

OY2 '~2 = 0 -  0 f 2  
00~1 00s "~- 0 

6~2~0 

and 

Also 

OY2 c~ 2 = o - -  Oa 2 

= 2d<x2)2{.~=o > 0 

16~1 i,jNN k,l 

-<xg;x;'> <x0 ;x0 > ] 
det 0Y3 OY3 < X o , X o )  - ", o, 0//1~=0/ - -  - -  4.  4 / X 2 . X 4 \ J I  

Oal ~a3 
~2=0 

(8) 

We claim the expression (8) is < 0. 
Indeed, there is no real r such that x 4 + ~-x02 = const almost every- 

where with respect to /~[~2=0. Hence in the next expression the Schwarz 
inequality must be strict, i.e., for no real $ can we have the equality: 

<(x4 + + 2> 

But this is a quadratic expression in r. Solving this for r must lead to 
nonreal solutions. This, however, is equivalent to the fact that the expres- 
sion in relation (8) is < 0, q.e.d. This concludes the proof of Proposition 2. 

Next we study the behavior when %---> oo. For this purpose we 
introduce new bare parameters (a'~, "r, a;) by 

O[ 1 = 0~1, T = (O~2) -1 /2 ,  0~; = Og 3 - -  doL 2 
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The Jacobian of this transformation is evidently 

~(O/tl , T, 0~3) ,/-3 

3(al,a2,a3) 2 

Expressed in terms of a'], r, a~ we introduce the scaled Jacobian 

Det'(a',, r, ct;) = r  

1 -] O(Yl ,Y2 ,  Y3) 
= - ~ *  0 (< ,~ ,~ ; )  

Our next result is as follows. 

Proposit ion 3. When ~-~ 0 the scaled Jacobian Det' has a limit 
which is everywhere negative, i.e., 

Det'(a',, O, a~) < 0 

for all a~ > O, a~ E •. 

Proof .  We first replace the set of random variables {xi}+~ 5 by the 
new set of random variables x o, {~i )ic .~T,~0 with 

~i = (xi - x0)( l / r ) ,  i @ ~-, i ~ 0 

Agreeing G0 to be zero, the measure may then be written as 

1 , _ )2 dS(xo,  {~i }i~-,/~0} = ~ exp - a I ~,  (x 0 + r~j) 4 exp 1 
k,lNN 

+ a; 2 (Xo + r e )  2 rr df ,  dxo (9) 

j~c0 

Finally let/ , '  =/*'(a],  a~) be the probability measure on R given by 

1 e x p ( -  '1~-I xa + ~;1~1 Xo ~) dXo (lO) &'(x0) = ~ ~ 

and denote by ( . ) '  = ( . ) ' ( a { ,  a~) the expectations with respect to g'. For 
any function F depending on x 0 only, we therefore have 

<F>[~: o = ( F ) '  

by comparison of (9) and (10). 
Our aim is to obtain the leading terms of 

O(Yl, Y2, Y3) 
a(<,~,~;)  

in an expansion in T around r = 0. This necessitates a corresponding 
analysis of all the matrix elements involved in this determinant. A lengthy 
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but straightforward calculation gives 

- (~2;Xo~/Ivl~+ o ( # )  

o#, 1 

Oyl 

0Y2_ 
8"r 

i -I + o(#)  
p,jE~ 
k, INN 

-- ( X 2 ; X 2 ) ' I V ] 2  + O(T 4) 

(Xo2; x4)'D(~-)l~-I 2 + 0(,/-4) 

1 E (XoZ;(~k-~,):)D(~-)[51 
"r k, lNN 

k,INN 

OY2 _ (xo2; xg)'D(U)lUI 2 + O(T 4) Oc~; 

Oy~ 
~0[, 1 -- ( ( y 4 ;  X4) / -- 6(Xo~; x?~}'(xg)')l~t 4 + 0(3  -4) 

0Y3 __ O(,T 2) 
0f 

0Y3 _ (6(x2; x2) ' ( x~)  ' -  (x4; x~>')l~-14 + o( ,  ~) 

Hence we obtain 

a(Y~, Y2, Y3) 
o(,~'~,~-,,~;) 

with 

(11) 

A0-)= • ID(g-)-j2](~.~#;(~-~t)2 ) (12) 
j,P 

k, lNN 
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By the arguments used to prove Proposition 2, it is enough to show that 
A 0" = 0) < 0. First we want to put A (~- = 0) into another form, so let 

(")(O) = N-1 - exp - ~- ((k - -  ~l )2 I - [  d ~  
, I~ ,~  

N.N 1r 

and for arbitrary j ,  p consider 

14(o) = <~A>(o)  

By scaling 

1 ,4(p) = -v 14(o = 1) 
p-  

such that 

-,~,,NNE, (~j~;(~k- ~,)2)(0 = 1 ) -  OU(p)O0 ~=, 

_ 1 2 14(0 = l) 

Comparison with (12) therefore shows that 

1 A(r  = 0) = ~- E [ D ( ~ - j 2 ] ( ~ i ( e ) ( o =  1) 
J,P 

Now we reintroduce the old random variables xj (j  E if) and define a new 
expectation parametrized by x > O: 

1 [ ~g~ x2i - 1 IX]  dxt ( . ) ( x ) = ~ f . e x p  - ~- 2 (Xk--X,)  2 
i ~ f f  k , INN J l E ~  

such that for expectations involving only ~ variables 

( . ) ( ~  = O) = ( ' ) ( 0  = 1)  

Next let 

In terms of the xj 

F ( j ,x )  = E (~j~e)(~) 

F(j,  x) = - ]fill (XjXo)(~) - (XoXo)(K) ] 

due to translation invariance. 
By Schwarz inequality and translation invariance 

F(j,  ~) >1 0 

By the results in Ref. 5 F(j,  ~) is nondecreasing in j  for j  2 increasing for any 
K > 0 and therefore also for ~ = 0 by continuity. Hence by Chebychev's 
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inequality A ( r  = 0) < 0 with equality only if F(j, • = 0) is constant.  Now 
F(j = 0, ~r = 0 ) =  0, so F(j, ~r = 0) can only be constant  if F(j, ~ = O)= 0 
for all j .  However,  

2 F(j,K=O)= (tr 
j ~  

since ~ , j ~ j  is a random variable which is not identically zero with respect 
to the measure in question. By the arguments above, this concludes the 
proof of Proposit ion 3. [] 

We finally discuss the behavior  for a~ ~ m. For  this purpose we now 
replace the bare parameters  c~ = (a l ,  oL2, a3) by (r, fl, 3') with 

a20/3 . 0~3 
T = Og I 1/2,  /9 = 2C~----- 7 , 7 -- 2C~, 

such that 

0(~, B, r) ~5 
0(cq, %,  %) 4 7 (13) 

To see what is going on, we rewri te/ ,  in terms of these new bare parameters  
as 

dtz({xj}je5)= l e x p  - - ~ i ~ ( x  2 -  7 ) 2 +  ~-i,jNN Jj~5 

and we see that for r ~ 0 and 7 > 0 we obtain the measu re / , "  = / , " ( / 9 ,  7) 
with 

dt*"({xi}ie~ = N - t e x p  -~ i,jNN , 

• r I [  16(xj- , / -y)  + 8(xj +,[~)]dxj (14) 
j ~s 

This is up to the scale factor y just  the Gibbs measure for an Ising model  
on ~- at temperature  T = 1/k/9. 

We now define the following scaled determinant:  

De t" ( r ,  /8, y) = r - 6 D e t ( c Q  

r - I  0(yl ,Y2,  Y3) 
- 4 0 ( r , / 9 , 7 )  (15)  

In what  follows, let oj = __+ l ( j  ~ ~-) denote  Ising model  variables and let 
( ) (/9) denote  its expectations at temperature  T = (k/9)- i .  Also set 

S ( m ) =  ~ % 
n : m , n N N  
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Note that 
U(m) = (1/2)a,~S(m) 

can be considered as the local Hamiltonian. Furthermore let 
T(m) = S(m) - 2do m 

Then we have the following: 

Proposition 4. The following asymptotic relations hold 

OYl Y 
o/3 [% 

OY2 Y 
03 I% 

~ 3  
aft 

OY,_ 1 

a y e _  1 
ov I~-I 

(o,,,j; omo.)(fi) + o(~ :) 
i,j 

m,nNN 

~,, (i--jl2(oioj;amo.)( /3) 470(r  2) 
i,j 

m,nN.N 
y2 
16~1 E <Oi;Oj;Ok;Ol;OmOn>(fl)-~- 0 (  7.2 ) 

i,j,k,l 
m,nN.N 

(o~,,~)(/3 ) + o(~ e) 
t,j 

(i - j )2(aioj)  ( f i )  + O(T 2) 
z,J 

2v ~ O,;oj;o~;o,)(/3)+ o(~') 
I~-I ,j,k,l 

1 OYi _ (  3 
2r Or - 8 - +  

f12 .Jf.. _ _  ~ 
167 

1 OY2 _ ( 3 
2r Or - 8 +  

fi2 l E (  i 
+ 16---~" Iff---[ i,j,m 

- - . - -  E ( i -  
+ 47 I~SI i,j 

/ 32 1 
- l-g FT,j~ 

1 3Y3 
2r 3r 

d B ) i t -  10Yl 3 /3 OYl 1 
07 8 72 0/3 + 8y 

E (~176 47 0(0 -2) 
I~-I i,j,m 

d/3)~,-' OY2 3 /3 3Y2 

_ j)2( a, oj; S(m) 2 ) (/8 ) 

j)2( ~ T( j ) ) (  /3 ) + O('r 2) 

OY3 3 13 Oy3 

(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

(16f) 

(16g) 

(16h) 

(oi;aj;ak;O,;S(m)2)(/3) + O(r z) (16i) 
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In particular the scaled determinant given by relation (15) has a finite limit 
when r tends to zero. 

Proof. We need an asymptotic expansion in r of the quantities 
appearing in 

~(fll, Y2, Y3) 

a0-,/~,  r) 

i.e., an expansion around the Ising model. Such expansions have already 
been performed. (36-4~ For our present purpose we make the following 
variable transformation on the random variables(al) : 

with 

where 

xj = oj(-~ (l + rye) (17) 

aj=-+l  and - r  l < ~ < o o  (18) 

We first note that the range of the integration over the ~j may be extended 
to - o  o, since this does not affect the coefficients in the asymptotic 
expansion. The remaining calculations are then standard and we leave the 
details to the reader. [] 

3. N U M E R I C A L  C A L C U L A T I O N S  

Since an analytical analysis of the Jacobian (15) is beyond the reach of 
present methods, we have performed a computer calculation on a CD 175 
computer to obtain information on the following quantities for d = 3: 

1 ~(Y,,Y2, Y3) I 
F ( f l ) - 2 "  ~((~;fl"@-,~=0.r=l 

(19) 

This is the relevant quantity to consider because 

l 0(y~,0,2, y3) ~=o 
2r 3(r, fi, y) = y F( fl ) 

so the u dependence is trivial for the scaled Jacobian. 
Also let 

y2(% B, r) ~=0 ~2(/~) - y , ( % / ~ , r )  

•,.j(i - j )2(o ,  oj) 
= y.i , /o/a+> (20) 
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be the correlation length squared of the Ising model, defined by the second 
moment. In order to avoid a six-fold do loop, we used another definition of 
the distance on a torus, i.e., a modification of the quantity ( i -  j)2 intro- 
duced in Section 2: For a lattice ~- of the form Z< • ~ n 2 " -  • Zn, we 
replaced (i - j ) 2  by 

d 
(i _ j } 2 =  1__ 7 ~] n?sin2(i, -Jl) ~ (21) 

qr" l= 1 

Using the Euler relations, it is easy to see that thus each of the quantities 
involving {i _ j}2  may be expressed as a sum of products of quantities 
which only require three-fold do loops. 

The y-independent quantity 

o ( B )  = - 2  Y3(Y,) ]~=o (22) 

is of interest because by the discussion in Refs. 7-9 conjecture (ii) may be 
replaced by a weaker assumption: The curve obtained by plotting 0(/3) and 

2(fl) in the (P, (2) plane should lie schlicht over the axis 0 = 0. 
Finally, the dimensionless renormalized coupling constant 

y3 (23) g(fi) - y2(y2/yl)a/2 

is of interest in the context of the hyperscaling relation (1): F, 42, p, and g 
are of course dependent on the lattice size but have a thermodynamic limit 
for/8 < tic (tic ~0.22169 for d =  3; see, e.g., Ref. 42). If now 

g ~ ( f l ) - -  lim g(fl) 

satisfies g~(fl~)> 0, then the discussion in, e.g., Refs. 7-9 shows the 
existence of a nontrivial ,54 theory in d dimensions. In fact, g~(fie) is that 
zero of the Callan-Symanzik/3 function which is related to the Ising model 
and the eases g~(tic) = 0 or g~(tic) > 0 decide whether the Ising surface 
falls into the Gaussian surface or not when the scaling limit is taken. 

The numerical analysis consisted in applying Monte Carlo techniques 
to calculate the expectation values Yl, Y2, and Y3 and partial derivatives 
thereof in form of suitable averages. We note that the quantities y~, Y2, and 
Y3 themselves involve relatively simple expressions in terms of the basic 
variables a~ going up to fourth-order moments. The determinant F(/3) on 
the other hand is already a complicated sum of products of expectations 
involving moments of up to sixth-order. 

To explain in more detail the techniques we used, we briefly recall the 
Monte Carlo methods used in the Ising model: The averages are evaluated 
by generating a sequence (i = 1 , 2 , . . .  ) of configurations ~ , ,  given by 
specifying the values a k, in such a way that a definite configuration 
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appears with a probability proportional to the Gibbs-Boltzmann factor: 

P ( ~ ) = e x p ( + f l  ~ off/) (24) 
i,j.U.U. 

The expectation value of any function Y(~) is then approximated by an 
average over configurations in the sequence 

i o + M -  1 

<YS F- 1 r(Z,) 
M i =  i o 

In order to use configurations already close to the statistical equilibrium a 
number i 0 of configurations at the beginning of the sequence is excluded. In 
our calculations i o was always roughly 100. 

Although other choices are possible, in our calculations the sequence 
(~]i)~= 1,2,3... was constructed as follows: 

The configuration ~,i+ 1 is obtained from ~ i  by a succession (specified 
below) of stochastic processes, one for each lattice point k. For the process 
associated with k, a k is set to a new value a~ according to a definite 
probability 

exp[ - fiAE(o'k) ] 
= 

2 exp[ - fiAE(o;') ] 
Ok, ,= • 1 

where AE(o~) is the interaction energy of o~ with the neighboring spins 
which keep their momentary values aj: 

j :j ,kN.N. 

In other words, this stochastic process corresponds to touching the spin o k 
with a heat reservoir at inverse temperature fl while holding all other spin 
variables fixed. The procedure generated by this choice of P(O'k) has been 
called the heat bath algorithm. An alternative possibility for P(os origi- 
nally introduced by Metropolis et al. (27) consists in changing the sign of the 
spin o k. If the new choice lowers AE, a k is changed to os = - o  k. If not, 
then this change is only made with the probability 

exp{ - f i [ A E ( -  ok) - AE(ok) ] } 

This procedure is applied successively to all spins in a lattice and consti- 
tutes a so-called sweep of the lattice. Thus during one sweep all lattice 
variables will be probed exactly once. The values of the spins of the end of 
one sweep, starting from ~ ,  give the configuration ~,i+z. 

It may easily be shown that this describes an ergodic Markov process 
with the Gibbs-Boltzmann distribution (25) being the unique stationary 
distribution. The statistical error 3Y for the average Y of a function Y(~) is 
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then given by the formula 

io+ M -  1 
1 

(SV)~-  M ( M -  1) .E  [ r ( 2 ~ ) -  ~ l  ~ (25) 
l ~ I 0 

This formula, however, is only reasonable if the subsequent ~]i's are 
uncorrelated. We have checked empirically that for the quantities we were 
interested in and for the lattice sizes and/3 values used, the statistical error 
does not change if we only use every second or third configuration ~ i. For 
a more detailed analysis of this problem, see, e.g., Ref. 30. Also during a 
sweep we moved in a regular way through the lattice, first in the z, then in 
the y, and finally in the x direction. 

A technique of storing many spins in a single memory word of the 
computer (multispin coding, MCS) to reduce memory requirements and 
processing time has been used. Besides the spins in the z direction we 
temporarily store the sum of the spins of five neighbors in a computer 
word, which reduces the code of the innermost loop to very few statements. 
They can then be processed very efficiently. For the sixth neighbor we use 
the last spin value obtained in the preceding step. This guarantees the single 
spin updating procedure with the above-mentioned properties of a Markov 
process. 

Since this multispin technique turns out to be most efficient for the 
heat bath method we mainly use this one in our calculations. It has been 
argued that the sequences of random numbers, obtained from the random 
number generator in computers, may have long-range correlations (Stoll, 
private communication). Since in CDC computers the computer word has 
60 bit, a large effect of such correlations is unlikely. To randomize small 
possible effects we change during the time of one sweep with 10% probabil- 
ity from the heat bath method over to the Metropolis method. We expect 
reduction of possible correlation effects not only because of the difference 
of the methods but also because of the fact that the Metropolis method 
makes less use of random numbers. 

The computations have been performed on lattices of the form 
2~, x Z n • •, (n = 5, 6, and 10), i.e., with lattices of linear extension n and 
periodic boundary conditions. The statistical error for the Jacobian and the 
dimensionless renormalized coupling constant turn out to be rather large, 
especially for small/? values. In particular for n - 10 we are only able to 
compute these quantities with sufficient accuracy for larger/3 values < tic 
without excessive processing times. Probably the main reason is, that, as 
already mentioned, the Jacobian and the coupling constant g are obtained 
from averages of relatively high moments of the basic variables o k. Fortu- 
nately, however, in the low-/? region volume effects are small, in particular 
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w e  h a v e  t h e  r e l a t i o n s :  

nlirn F ( O )  = d, 

)~m ~ 2(o) = o, 

, ( o )  = l ,  

g ( 0 )  = oo, 

3F 
limo~ - ~  ( 0 ) =  1 2 d  2 

Um ~ (o) = 2d 

8p 
a-fl ( o )  = 8 d  

~( o )  = - 

( 2 6 )  

9.0- 

Cq 

6.0- 

3.0- 

�9 n=5 

[] n=6 

�9 n- lO 

[ ]  

[ ]  

g �9 

[]  []  

[ ]  [ ]  

[ ]  

0.0 ~ ""m"t'"'a'"~"~ 
0.0 OZ04 0.'08 0.'12 0Z16 0.20 

Fig. 1. The square of the correlation length ~2 as a function of ,8 for the lattices of linear 
length n = 5 (450000 sweeps), n = 6 (600000 sweeps), and n = 10 (240000 sweeps). The 
statistical errors do not appear in the plot, since they are smaller than the plotted symbols. In 
the region fl < 0.1 the curves should already represent the thermodynamic limit function. For 
larger fl the curves split up due to finite volume effects. The slope at 3 = 0 is taken from 
relation (26). 
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16 

lO"- 

�9 n -5  

�9 n - 6  

,, n-lO 
tI. 
I. 

! 

! 

~ !  ..-'" 

0:0 oh4 0'08 0112 0:16 0.'20 

Fig. 2. The scaled Jacobian as a function of ft. Because of the logarithmic scale the error 
bars show the relative error. Values of the n = 10 lattice for small /3 are not given since the 
statistical errors were too large with the computation time available. 

No te  that  the weak  n dependence  of these quanti t ies  at  fi = 0 only comes in 
through the use of the per iodic  length definit ion(22).  In  the calcula t ions  we 
have taken 450000, 600000 and  240000 sweeps for n = 5, 6, and  10, 
respectively,  and  for e a c h / 3  value.  The  process ing t ime on the C D C  175 
compute r  for one /3  value  in the case of n = 10 was 1.7 hr, the reduct ion  in 
comput ing  t ime due  to mul t ispin  coding  being a factor  of roughly  2. 

The  results of the ca lcula t ion  are p lo t ted  in Figs. 1-4.  F o r  compar i son  
we also show the l inear  slopes of the quant i t ies  at  fl = 0 as they may  be 
read  off re la t ion (26) for d = 3. Wi th in  the error  bars  the quant i t ies  for 
different  n have  the same values up to fi ~ 0.1. Indeed ,  as jus t  ment ioned ,  
in this region the curves should a l ready  co r respond  to the t h e r m o d y n a m i c  
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P 
Fig. 3. The squared correlation length ~2 plotted as a function of the coupling constant O 
shows the shape of the (O, ~2) region covered by the c) 4 theories on the corresponding lattices. 

limit function. By increasing /~ the curves split up due to finite volume 
effects. 

The correlation length (Fig. 1) increases monotonically with fl for the 
three lattices and confirms conjecture (ii). The Jacobian (Fig. 2) shows the 
same simple behavior although on a logarithmic scale. In particular since 
the steepness grows with the lattice size, this result strongly supports 
conjecture (ii) for all n at the Ising model. It would be interesting to obtain 
a better theoretical understanding of this quantity, in particular to know the 
critical exponent. 

In Fig. 3 we give the boundary curves of the (p, ~ 2) region. Varying the 
bare parameters for fixed y l ,  all (p,~2) values of the 4, 4 theory should lie 
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Fig. 4. The dimensionless renormalized coupling constant g as a function of/~. 

between O = 0 and these curves. The result shows that they have a simple 
shape. 

Finally, in Fig. 4 we give the dimensionless renormalized coupling 
constant g plotted versus ft. Interpreting this figure, it seems very unlikely 
to obtain any reliable information on go(t ic)  and thus directly on relation 
(1) with the help of Monte Carlo methods. 

We note that the curve g o ( f l )  in the form predicted by G. A. Baker, 
Jr. (4) with a small critical exponent dp - 2A + y = 0.028 is almost constant 
up to fl~ and goes to zero only within a very small fi region. 

To conclude, the numerical results obtained so far favor conjecture (i) 
and conjecture (ii) when the bare coupling constant go becomes infinite. It 
would be interesting to perform similar calculations for finite go although 
we expect only lattice sizes up to n ~ 8 to be within reach of Monte Carlo 
methods by present computer facilities. 



Analytic and Numerical Evidence from Quantum Field Theory 289 

ACKNOWLEDGMENTS 

The authors would like to thank G. A. Baker, Jr., E. Brezin, H. 
Mfiller-Krumbhaar, K. Osterwalder, C. Rebbi, E. Stoll, K. Symanzik, H. J. 
Thun, K. G. Wilson, and J. Zinn-Justin for stimulating discussions and 
correspondences. 

REFERENCES 

1. J. Glimm and A. Jaffe, Ann. Inst. Henri Poincar~ 22:109 (1975). 
2. R. Schrader, Phys. Rev. B 14:172 (1976). 
3. G.A.  Baker, Jr. and S. Krinsky, J. Math. Phys. 18:590 (1977). 
4, G.A.  Baker, Jr., Phys. Rev. B 15:1552 (1977). 
5. R. Brenzi and G. Martinelli, Validity of the scaling law for the specific heat in three 

dimensional lsing model and in the self avoiding walk, University of Rome preprint, 
1978. 

6. E. Brezin, J. C. Le Guillou, J. Zinn-Justin, in Phase Transitions and Critical Phenomena, 
Vol. 6, C. D. Domb and M. S. Green, eds. (Academic Press, New York, 1976). 

7. R. Schrader, Commun. Math. Phys. 49:131 (1976). 
8. R. Schrader, Ann. Inst. Henri Poincar~ 26:295 (1977). 
9. R. Schrader, Commun. Math. Phys. 50:97 (1976). 

10. R. Schrader, Phys. Rev. B 15:2798 (1977). 
1t. K. Symanzik, J. Math. Phys. 7:510 (1966). 
12. E. Nelson, J. Funct. Anal. 12:97 (1973). 
13. J. Bjoerken and S. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965). 
14. F. Guerra, L. Rosen, and B. Simon, Ann. Math. 101:111 (1975). 
15. J.L. Lebowitz, Commun. Math. Phys. 35:87 (1974). 
16. J. Glimm and A. Jaffe, Phys. Rev. Lett. 33:440 (1974). 
17. K. Osterwalder and R. Schrader, Commun. Math. Phys. 31:83 (1973); 42:281 (1975). 
18. J.S. Feldman and K. Osterwalder, Ann. Phys. (N.Y.) 97:80 (1976). 
19. J. Magnen and R. Seneor, Ann. Inst. Henri Poinear~ 24:95 (1976). 
20. Y, M. Park, s Math. Phys. 18:2423 (1977). 
21. J. Glimm and A. Jaffe, Fortschr. Phys. 21:327-376 (1973). 
22. J. Glimm, A. Jaffe, and T. Spencer, in Constructive Quantum FieM Theory, G. Velo and 

A. S. Wightman, eds., Springer Lecture Notes in Physics, Vol. 25 (Springer Verlag, 
Berlin, 1973). 

23. G.A.  Baker, Jr. and J. M. Kincaid, Phys. Rev. Lett. 42:1431 (1979). 
24. B .G.  Nickel and B. Sharpe, On hyperscaling in the Ising model in three dimensions, 

University of Guelph preprint, 1979. 
25. K.G.  Wilson and J. Kogut, Phys. Rep. 12C:75 (1974). 
26. D. Marchesin, Ph.D. thesis, New York University, 1975, unpublished. 
27. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 

J. Chem. Phys. 21:1087 (1953). 
28. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 5.B, C. Domb and M. S. 

Green, eds. (Academic Press, New York, 1976). 
29. K. Binder, ed., Monte Carlo Methods in Statistical Physics (Springer Verlag, Berlin, 1979). 
30. H. Mfiller-Krumbhaar and K. Binder, J. Stat. Phys. 8:1-24 (1973). 
31. M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. Lett. 42:1390 (1979). 
32. M. Creutz, Phys. Rev. Lett. 43:553 (1979). 



290 Schrader and Trankie 

33. C.G. Callan, Jr., Phys. Rev. D 2:1541 (1970). 
34. K. Symanzik, Commun. Math. Phys. 18:227 (1970); 23:49 (1971). 
35. K. Symanzik, in New Developments in Quantum Field Theory and Statistical Mechanics, 

M. L~vy and P. Mitter, eds. (Plenum Press, New York, 1977), p. 265. 
36. J. Glimm, A. Jaffe, and T. Spencer, Ann. Phys. (N. Y.) 101:610, 631 (1976). 
37. G. Caginalp, The q54 lattice field theory as an asymptotic expansion about the lsing 

model, Rockefeller University, preprint, 1979. 
38. G. Caginalp, Thermodynamic properties of the @ lattice field theory near the Ising limit, 

Rockefeller University, preprint, 1979. 
39. F. Constantinescu and B. Stroter, The Ising limit of the double well model, preprint 

Johann Wolfgang Goethe University, Frankfurt, 1979. 
40. F. Constantinescu, Phys. Rev. Lett. 43:1632 (1979). 
41. A. Jaffe and R. Schrader, unpublished. 
42. C. Domb, in Phase Transitions and Critical Phenomena, Vol. 3, C. D. Domb and M. S. 

Green, eds. (Academic Press, New York, 1976). 


